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The static and dynamic properties of  several hydrogen 
bond network models, based on the square ice model of 
Lieb [Phys. Rev. 162, 162 (1967)] are studied. The two- 
dimensional square water (SW) model and the three-di- 
mensional brick water (BW) model were analyzed by 
means Of Monte Carlo simulations. A simplified version 
of SW (simpl~'ed square water, SSW) can be solved ex- 
actly. All models yield similar thermodynamic results 
which can be derived - alternatively - from an inde- 
pendent bond approach due to Angell [J. Chem. Phys. 
75, 3698 (1971)]. We suggest the existence of  a univer- 
sality class of  hydrogen bond networks that can be de- 
scribed by this theory, and which may include the liquid 
state of water. The mean lifetime of a hydrogen bond 
exhibits an Arrhenius temperature dependence. Compar- 
ison with experimental data on water provides an abso- 
lute time scale for the Monte Carlo simulations. The pos- 
sible use of  these models in simulations of  protein-solvent 
systems is discussed. 

I. Introduction 

Water is a substance that exhibits many unusual prop- 
erties [ 1,2]: (i) high dielectricity constant, (ii) negative 
volume of melting, (iii) density maximum at 4 ~ (iv) 
isothermal compressibility minimum at 46 ~ (v) high 
mobility of protons even in the liquid state of water, (vi) 
high melting and boiling points, (vii) numerous ice pol- 
ymorphs, etc. In order to describe some of these anom- 
alous properties (ii-vi), the concept of hydrogen bonds 
was introduced by Bernal and Fowler [3] and subsequent 
authors (e.g. Eisenberg and Kauzmann [ 1 ]). Over the last 
few years it has become apparent that the structure of 
liquid water can be described as a network of hydrogen 
bonds [4, 5, 6]. Those hydrogen bonds open and close 
randomly due to thermal fluctuations. Experimental re- 
sults [7], MD-simulations [8], and percolation models [5] 
suggest the existence of  a - although dynamically varying 
- percolating cluster of  hydrogen bonded water molecules 
over the whole temperature range of liquid water. 

An important aspect of liquid water is its role as a 
universal solvent in the biosphere on earth. In order to 
study the structure and properties of biological macro- 
molecules it is necessary to consider their interactions 
with water. Hydrogen bonds are involved in the structure 
formation of DNA, RNA and of  proteins [9, 10]. Those 
hydrogen bonds may be within the polymer chain itself, 
stabilizing its secondary and tertiary structure, as well as 
between the polymer and the surrounding water. Par- 
ticularly the latter, the intermolecutar hydrogen bonds, 
are neglected - for the sake of simplicity - in most models 
of structure formation in biological macromolecutes. 
Nevertheless they give an important contribution to the 
structure as well as to the function of  biomolecules [11 ]. 

Currently, the state of the art technique in studying 
such complex systems as macromolecules in solutions is 
molecular dynamics (MD) simulations [12]. The particles 
in MD-simulations interact purely by classical forces, 
quantum mechanical effects being neglected [13],. Still, 
due to the huge number of  particles involved and the 
remaining complexity of the force field, the available 
computing power is often not sufficient to s~u la t e  such 
systems over the necessary time scales. Although MD- 
simulations of water-protein interactions including a few 
water molecules surrounding the protein were carried out 
[ 14, 15, 16], the time scales of the res~fing trajectories are 
much shorter (about lOOps), than those of  interest- 
ing processes in proteins [17]. For  example, enzymatic 
processes in proteins take place mostly on the nanosecond 
time scale, while protein folding processes last for seconds 
to minutes [18]. 

The motivation for the present work is to introduce 
simple models of a water-like liquid which may be able 
to describe important aspects of water-protein interac- 
tions and - ultimately - protein folding in an aqueous 
environment. In our approach this is done by using simple 
two- and three-dimensional lattice models of  hydrogen 
bond networks that may be able to capture important 
properties of the liquid state of  water. To incorporate 
water-protein interactions via intermolecular hydrogen 
bonds is straightforward in these models. We note that 
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those models can be simulated already on a personal 
computer. Therefore, it should be easily possible to ex- 
tend the simulations to longer times or to simulate larger 
models. 

In this paper  we will concentrate on the static, i.e. 
thermodynamic,  and dynamic properties of  these hydro- 
gen bond network models. Solute-water and protein- 
water interactions in those models will be the subject of  
subsequent papers [ 19, 20]. 

II. Square water 

ILa. The model 

The two-dimensional square water (SW) model is an ex- 
tension of  the square ice model by Lieb [21] to non-zero 
temperatures. Water  molecules are placed on a square 
lattice. By projecting the almost tetrahedrical geometry 
of a water molecule (see Fig. 1) into a plane, while re- 
taining the local connectivity of  a diamond lattice [21], 
one arrives at the six possible conformations shown in 
Fig. 2. A hydrogen bond can form between neighbouring 
water molecules only if the O - - H  bond of  one molecule 
faces the oxygen a tom of the other, see also Fig. 2. The 
restriction of  the possible orientations of  water molecules 
to those conformations is motivated by the strongly di- 
rectional nature of  hydrogen bonds [22]. We denote the 
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Fig. 1. Tetrahedrical geometry of a water molecule 
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Fig. 2. Allowed conformations of water molecules on the square 
lattice in the SW model; hydrogen bonds are indicated as dotted 
lines 

energy of a hydrogen bond by - e .  In the square ice 
model the problem was to determine the number of  global 
configurations where all hydrogen bonds are saturated 
[21]. Here, each molecule may rotate due to thermal fluc- 
tuations (see also Sect. II .d) and, thereby, form or break 
hydrogen bonds. Translational and vibrational degrees 
of  freedom are disregarded, for simplicity. 

The formalization of this model is straightforward. 
The vector v = (j, k), j ,  k = 1.. .L, denotes the N =  L 2 sites 
of  a square lattice of  length L, and we will assume periodic 
boundary conditions ( L +  1 -  1). The possible confor- 
mations of  water molecules at each lattice site v can be 
described by orientation variables si(v), i= 4-x, +_y, 
which form an orientation vector s (v). The values o f s  i (v) 
are chosen to be one, if an O - - H  bond of  the water 
molecule points in direction i, and zero otherwise. In 
order to limit the 16 possible conformations of  s(v)  to 
those of  Fig. 2, the condition 

~, s i ( v ) = 2  (1) 
i--  _+x, ----t-y 

must be fulfilled at each lattice site v. Using the unit 
vectors e , = ( 1 , 0 )  and ey=(0 ,  1) we can construct bond 
variables 

b x ( v ) = s x ( v ) + s  ~ ( v + e x ) - 2 s x ( v ) s  x (v+ex) ,  (2) 

similarly for by. These bond variables have the values one 
if there exists a hydrogen bond between v and v + e x (or 
between v and v+ey in the case of  by), and are zero 
otherwise. The Hamiltonian is then simply the sum of all 
possible hydrogen bonds, multiplied by the hydrogen 
bond energy - e, 

N 

H = - ~  ~ [bx(vi)+b,.(v,)]; (3) 
i = l  

where the sum is over all N = L 2 lattice sites. The partition 
function for SW can now be written as 

Z s w =  ~ . - -  ~, . - -  
s . ~ ( v D = 0 , 1  s y ( v ~ ) = 0 , 1  

Z ' Z 
Sx(V~,)=O, 1 S- -y(VN)=O,  1 

z (4, 
j =  1 i =  + x ,  •  

fl is the inverse temperature, fl = 1/k B T, where ke is 
Boltzmann's  constant, and T is the absolute temperature. 

denotes the Kronecker symbol, with ~ (i, j )  = 1 if i=j ,  
and zero otherwise, and arises from the limitations in the 
number  of  possible conformations of  the water molecules, 
see Eq. (1). 

ll.b. Simplified square water 

By omitting the stretched conformations in Fig. 2 we ar- 
rive at the simplified square water (SSW) model. As a 
consequence, the orientation variables s t obey the rela- 
tions s x = 1 - s  x, similarly for sy. The condition Eq. (1) 
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is then automatically fulfilled. It is sufficient to use only 
the two components s~(v) and sy(v) of the orientation 
vector s (v). For  the evaluation of the partition function 
it is useful to t ransform these orientation variables by 

a ~ = 2 s x -  1, a x e { - 1 , 1 } ,  (5) 

similarly for Sy. The bond variables are then given by 

b~ (v) = �89 [a~ (v) a x (v + e~) + 1], (6) 

and a similar expression for by. The Hamiltonian H, 
Eq. (3), may be separated into its x- and y-contributions" 

N N 

H= ~, bx(v~)+ ~, by(v~)-H~+Hy. (7) 
i=1 i : I  

Both components,  H~ and Hy, can be divided further into 
the contributions from the rows and columns of the square 
lattice: 

Zl=exp(flLa/2) ~ ~ 
Crl= ~ l  

exp ((fie~2) ~ a,,an+~). (12) 
O'L= ~ 1 n = l  

This is equivalent to the partition function of the one- 
dimensional Ising model [23], multiplied by the factor 
exp (fiLe~2). Using the well known result for the parti- 
tion function of the one-dimensional Ising model [24], 
we arrive at the result 

Z s s w =  [(1 +exp(flg))L(1 +[tanh(fle/2)]L)] 2L. (13) 

In the thermodynamic limit ( L - ~ m ) ,  at non-zero tem- 
peratures, Eq. (13) becomes 

lim 1 l n Z s s w = 2 1 n (  1 + e x p ( f l e ) )  (14) 
L~co N 

H x =  2 bx(1)i) 
i~ rowl 

+ Z Z 
i ~ row 2 i ~ row L 

bx(vi) 

(s) 

Replacing the "rows" by "columns" in (8) gives a similar 
expression for Hy. Utilizing (7) and the fact that the 
Kronecker delta in (4) is unity for all conformations of  
a x and ay,  the partition function of this model may then 
be written as a product of  the x- and y-components:  

( 1 )  • 1 a ~(VN)= • 1 ~x V 

•  ~, " ' "  ~, exp ( -  f i l ly ) )  
a , V = + | ( I )  Gy(VN) = ~ I 

7 ( x )  7 ( y )  -- ~ssw ~ssw- (9) 

Using Eq. (8) it is possible to factorize the x-component  
further into products of  contributions from the rows of 
the square lattice: 

ssw )~ " ' "  ~, e x p ( - f l H ~  t)) •  
o-v(Vl)= + 1 O-,(VL): • 1 

)< ( L ) )  - -"  ~, e x p ( - f l H )  ) . 
Gv(V(L--I)L)=@[ OX(VL2)=+I 

(lo) 

The y-component  can be factorized similarly into con- 
tributions from the columns. I t  is easy to show that the 
contributions from each row and column are equal. 
Therefore, Eq. (9) can be simplified to 

Zssw = Z 2L, (11) 

where Z~ is the partition function of a single row or 
column: 
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Fig. 3. a Average nmnber of hydrogen bonds per molecule, (nil} , 
and b specific heat per molecule, % vs reduced temperature for the 
models discussed in the text; (straight line) exact results from SSW, 
Eqs. (15) and (17), respectively; (o) results from MC simulations 
of SW on a 50 • 50 lattice with periodic boundary conditions ; ( • ) 
results from MC simulations of BW on a 12 • 12 • 12 lattice with 
periodic boundary conditions; the error bars for the MC results 
are in a less than and in b about the size of the symbols 
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The thermodynamic observables of  interest, e.g., the av- 
erage number  of  hydrogen bonds a water molecule par- 
ticipates in, (n i l ) ,  can be deduced easily f rom the above 
result: 

2 d 4exp( f l e )  
(n i l )  -- In Zss w -- (15) 

Ne dfl 1 + e x p ( f l e )  

The hydrogen bond fluctuations, ( d n 2 ) = ( n 2 )  - 
(n~/) 2, are given by 

4 d 2 8 exp (fie) 
(One) - N e  2 dfl a l n Z s s w - ( 1  + e x p ( f l e ) ) 2 .  (16) 

The specific heat per molecule, G, is related to the hy- 
drogen bond fluctuations by 

cv/k B _ _  (/~e) 2 (dn2)  _ 2 (fie) 2 exp (Be) (17) 
4 (1 + exp (e)) ~ 

The dependence of  ( n ~ )  and of  c o on the reduced tem- 
perature T * =  l / f i e  is shown in Fig. 3. The number of  
hydrogen bonds per molecule ranges from ( n / j ) = 4  at 
T * = 0  to (n i l )  = 2  for T * ~ o o .  

11.c. Upper and lower bounds 

Because of the complication due to the Kronecker  delta 
in (4), it was not possible to find an analytical solution 
for the partition function of the SW model. However 
analytical upper and lower bounds for Zsw can be ob- 
tained. 

By dropping the Kronecker delta in (4), i.e. allowing 
more conformations of  the orientation vector s, one ob- 
tains an upper bound to the partition function of  SW. We 
denote this upper bound by Z 4. Z 4 allows, apart  f rom 
the six water conformations of  Fig. 2, also various 
orientations of  molecules which differ from water. These 
molecules are of  the form O, OH, OH3, and O H  4. Z 4 is, 
therefore, the partition function of  a hydrogen bond net- 
work averaged over all possible distributions of  these 
partly hypothetical molecules. Z4 can be solved in the 
same way as Zss w. The x- and y-components as well as 
the rows and columns of Z 4 factorize, giving rise to an 
effectively one-dimensional partition function which can 
be evaluated by a transfer matrix approach [24]. The 
thermodynamic limit result is 

1 
lim l n Z 4 = 2 1 n ( 1  + e x p  (fie)) + 21n2.  

N~oe N-  
(lS) 

We note that Zss w, due to the limitations in the number  
of  conformations, gives a lower bound to Zsw. Therefore 
the, relationship 

ZSSW < Z s  w < Z 4 (19) 

holds. Interestingly, apart  f rom a multiplicative constant, 
the functional dependence of Z 4 and of  Zss w on the tem- 
perature is the same. 
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Fig. 4. a Error bars in SW simulations: (o) results from MC-sim- 
ulations of SW on a 30 • 30 lattice; (•  results from MC-simula- 
tions of SW on a 50 • 50 lattice; b comparison of MC-simulations 
of SW: (o) using the random number generator ran2; ( • ) using 
the random number generator ran3, both from Ref. 26; e error bars 
in BW simulations: (o) results from MC-simulations of BW on a 
8 • 8 • 8 lattice; (•  results from MC-simulations of BW on a 
12• 12• 12 lattice; (zx) results from MC-simulations of BW on a 
20 • 20 • 20 lattice 
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II.d. Monte Carlo simulations 

For  the evaluation of  the thermodynamic properties of  
the SW model Monte Carlo (MC) simulations were car- 
ried out using a Metropolis algorithm [25]. During an 
elementary step a water molecule may rotate by flipping 
one of  its OH-bonds  into one of  the unoccupied direc- 
tions. Thereby, an angular conformation may either ro- 
tate or switch to a stretched conformation, while a 
stretched conformation may switch back to an angular 
form. An MC-step was considered to be an update of  the 
whole lattice. The number of  hydrogen bonds was re- 
corded after each MC-step. Periodic boundary conditions 
were used to eliminate surface effects. All simulations 
reported in this paper were performed using the portable 
random number generator ran3 from [26]. 

Several MC-simulations of  various lengths were per- 
formed with lattices of  different sizes. A typical simula- 
tion (square lattice, 30 •  molecules, 104 MC-steps) 
takes about  1.5h CPU-time on an Apple Macintosh 
SE/30 personal computer.  We tested the convergence of 
the obtained data with longer simulations and larger sys- 
tems and these results are reported in this paper. One 
such simulation (square lattice, 50 • 50 molecules, 7 x 104 
MC-steps) takes about  14 h CPU-time on a MicroVAX 3. 
The mean number of  hydrogen bonds per molecule, (n i l ) ,  
and the heat capacity per molecule, c~, were calculated 
from the simulation data [27], discarding the first 104 
MC-steps. 

The results of  our simulations are shown in Fig. 3. 
Obviously, there is no significant difference between the 
results from the Monte Carlo simulations of  the SW model 
and the exact results for the SSW model. In view of the 
differences between the two models (more allowed con- 
formations of  water molecules in SW than in SSW) this 
is quite surprising. For  a more detailed discussion of this 
result see Sect. IV. 

The simulations exhibited a very good convergence, 
which is confirmed by the small errors for (n i l )  and c~. 
Their relative magnitude is + 0.01% for (nLr) and 4- 1.0% 
for c~. Due to the rapid convergence of the data it is 
sufficient to simulate smaller lattices over a shorter time 
(e.g. 30•  30 molecules, 2 •  10 4 MC-steps), see Fig. 4a. 
Therefore, the same results can be obtained already by 
using a PC instead of minicomputers or mainframes. 

We note that it is crucial to use a good random number 
generator in MC-simulations. The influence of two dif- 
ferent random number generators (function ran2 and ran3 
from [26]) on the errors of  c o calculated from the simu- 
lation data is shown in Fig. 4b. 

III. Brick water 

A straightforward extension of SW to three dimensions 
is to place the tetrahedrical water molecules on a diamond 
lattice, as in ice I h [1]. The coordination number  is the 
same as in SW, namely four. A cubic lattice with only 
four connections between the lattice sites, instead of six, 
see Fig. 5, has the same topology as a diamond lattice 
and is a description of  a tetrahedrical lattice convenient 

Fig. 5. Bond connectivity in a 4• 4 • 4 BW lattice; the possible 
orientations of the water molecules are indicated as bold lines at 
two sites 

for storage in computer memory.  We termed this model 
brick water (BW) because in this representation the lattice 
looks like a brick wall. 

The conformations of  the water molecules as well as 
the hydrogen bond definition are the same as in the SW 
model: the allowed conformations have two O - H  bonds 
that point in two of the four possible directions at each 
lattice site, see Fig. 5. In principle it is possible to for- 
mulate the partition function for BW in analogy to the 
SW model. However, due to the peculiar connectivity in 
the BW model, ZBw results in a far more complicated 
expression than Zsw, which we omit here. Similarly to 
SW, an analytical evaluation was not possible. 

The MC simulations of  the BW model were carried 
out in the same way as in the SW case. Simulations of 
smaller lattices (8 • 8 • 8 molecules, 10 4 MC-steps) took 
about  2 h CPU-time on an Apple Macintosh SE/30 per- 
sonal computer. Again the convergence of these simu- 
lations was tested with larger lattices and longer runs 
(12• 12• 12 water molecules, 7 •  10 4 MC-steps). The 
simulations reported here were carried out on a Micro- 
VAX3, taking about 20 h CPU-time. The first 10 4 steps 
were discarded for equilibration. Again, ( n i l )  and c~ were 
determined from the simulation data. 

The temperature dependence of the average number 
of  hydrogen bonds per molecule (n,,/) and the heat ca- 
pacity per molecule c~ is shown in Fig. 3, together with 
data from SW and exact results from SSW. In spite of  
the higher dimensionality of  the BW model, there is again 
no significant difference in the temperature dependence 
of ( n i l )  and c v between the various models. A possible 
interpretation of this phenomenon is given in the follow- 
ing section. 

The convergence of the simulation data is almost as 
good as in the SW simulations (error of  (n/~) = _+ 0.01%, 
error for c~ = _+ 1.5%), see Fig. 4c. Therefore, it is entirely 
sufficient to use a PC for simulations of  the models de- 
scribed so far. 
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IV. Universality 

The strikingly similar thermodynamic results for the 
above discussed models, see Sects. II and III, can also 
be obtained by an independent bond description of  a hy- 
drogen bond network. We give here a derivation slightly 
different fi'om Angell's original work [28, 29]. Let us as- 
sume at most M hydrogen bonds are possible in this 
network. For  independent bonds, the partition function 
factorizes into M identical contributions, Z~b, of  a single 
bond, which can only be broken or saturated. The par- 
tition function for this independent bond model is, there- 
fore, simply 

Z i b  = Zsaff  m (1 2f_ exp (fie))M. (20) 

One can assume that in systems as dense as ice or liquid 
water the maximum number of  possible hydrogen bonds 
is M ~ 2 N ,  with N being the number of water molecules. 
Inserting M = 2 N in Eq. (20) yields a result identical to 
the partition function of  the SSW model, Eq. (14). Since 
the thermodynamic properties of SW, BW and SSW (and 
of Z4) over the whole temperature range are similar, see 
Fig. 3, this independent bond description of a hydrogen 
bond network seems to capture the behavior of a whole 
class of  network models [30]. Therefore we suggest the 
existence of a - possibly large - universality class of hy- 
drogen bond networks, whose thermodynamic properties 
are governed by the independent bond approach. We note 
that also the dynamic behavior of SSW, SW, and BW is 
very similar, see Sect. VI below, supporting this univer- 
sality hypothesis. 

As a consequence of this universality, the partition 
functions of the various hydrogen bond network models 
of  water should differ only in a multiplicative constant, 
giving rise to the same temperature dependence of all its 
derivatives. Therefore, the partition function of a partic- 
ular network model should have the asymptotic form 

lim 1 l n Z =  lim 1 lnZib+SO/kB, (21) 
N + ~ N  N + ~ N  

in the thermodynamic limit. S o is the zero temperature 
or residual entropy [31] per molecule of the model 
in question. It can be obtained from S~ 

1 Z(H~ = lim l n Z  (~ ,  with being the number of pos- 
N ~ m  

sibilities to arrange M hydrogen bonds in the network. 
Z (H) can be calculated from the partition function of the 
particular model by Z(/~) = lim (Z/exp  (Mile)) .  

T * ~ 0  
The residual entropy of  the SW model is identical to the 
entropy of  the square ice model [21], S ~  - 3 4 - 5 1 n  5. For  

SSW it is zero, for the upper bound partition function 
Z 4 it is Sz~ B = 2 In 2. 

V. Percolation description 

The success of  the independent bond approach [28] in 
describing the thermodynamic behavior of our micro- 
scopic hydrogen bond network models provides a justi- 

fication for an alternative description of these systems in 
terms of bond percolation models. The pertinent param- 
eter for a bond percolation description, the probability 
PH for finding a hydrogen bond between two adjacent 
lattice sites, is given by 

( n ~ )  (22) 
P H -  4 

If PH is greater than the percolation threshold Pc, then 
there exists always a spanning cluster of hydrogen bonded 
water molecules [32]. The exact value of Pc depends 
strongly on the actual geometry of the lattice. For  ex- 
ample, Pc = 0.5 for a square lattice with bond percolation, 
and Pc = 0.388 for a diamond lattice with bond percola- 
tion [32]. In our models the probabilities PH for a hy- 
drogen bond are all well above the percolation threshold 
Pc of most lattices [32]. Therefore, a spanning cluster 
exists at all temperatures in SW, SSW, and BW, and no 
percolation-transition occurs. 

The distribution of probabilities p(i)  for finding a 
water molecule with i hydrogen bonds, i = 0 ..... 4, in the 
lattice, can be derived from the probability for a hydrogen 
bond PH, Eq. (22). Because all bonds are independent, 
p (i) is simply a binomial distribution: 

p( i )=(1 -p ,~ )4 - ip~  ( ~ ) .  (23) 

Eq. (23) is valid for the SW, SSW, as well as the BW 
model. 

Percolation models of water have already been inves- 
tigated in more detail [5, 33]. In those models, however, 
PH is used as an input parameter, whereas in our approach 
PH is related to <nil> , see Eq. (22). Therefore, the tem- 
perature dependence of Pz+ and, consequently, of p (i) is 
known. The binomial distribution (23) was also found in 
MD-simulations of  water [6,34] and in other water 
models [35]. The existence of a spanning cluster of 
hydrogen bonded water molecules over the whole tem- 
perature range of liquid water was also found in MD 
simulations [4, 36]. 

Such a cluster may be an explanation for the abnormal 
high mobility of protons in water. The transport of pro- 
tons can be performed by a flipping of  hydrogen bonds, 
together with the suggested tunneling mechanism for pro- 
ton transport in liquid water [4, 37]. For  the interaction 
of a hydrophilic solute with water a spanning cluster may 
have another consequence. In water a much smaller trans- 
lational diffusion coefficient is observed for hydrophilic 
solute molecules. The usual explanation for this phenom- 
enon is the increased effective size of the solute molecule 
due to the hydration shell. If  the bulk water is dominated 
by a spanning cluster of hydrogen bonded water mole- 
cules a hydration shell separate from the bulk water may 
not exist, but the hydrophilic solute molecule is always 
attached to the spanning cluster via its hydrogen bonds. 
Therefore, during the motion of a hydrophilic solute 
molecule in water, this connection to the bulk water has 
to be broken and formed again continuously. This leads 
to an effectively increased viscosity of the medium for 



that  solute molecule. The higher effective viscosity and 
not  an increased effective size o f  the solute molecule would 
then be the reason for the lower diffusion coefficient ob- 
served. 

VI. Dynamics  of  S W  and B W  

Count ing  the number  o f  MC-steps for the existence o f  
each individual hydrogen  bond  in simulations o f  SW and 
BW (SW: 5 0 x 5 0  lattice, 7 •  MC-steps,  BW: 
12•  12•  12 lattice, 7 •  10 4 MC-steps)  yields the distri- 
but ion of  lifetimes P ( r )  in each model. The functional  
form of  P (r)  versus r is shown in Fig. 6 for  bo th  models 
in a double logari thmic plot. For  high temperatures P (z) 
is simply exponential. Non-exponent ia l i ty  is observed at 
lower temperatures ( T * <  0.6), exhibiting an algebraic re- 
gime, P (z) o c r  -~, after a short  initial transient. Only at 
very low temperatures ( T * =  0.2) a difference in the shape 
o f  P (r)  between SW and BW is recognizable, see Fig. 6. 

The exponent  ~ o f  the algebraic regime was obtained 
by a fit to P (r)  oc r ~. Wi th  increasing temperatures the 
values o f  ~ decrease and the range o f  the algebraic regime 
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Fig. 6. a Distribution of lifetimes in the SW model, P(r)  vs 
r (MC step) for several temperatures T *. b Distribution of lifetimes 
in the BW model 
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Table l. Parameters c~, q and r c for the hydrogen bond lifetime 
distribution of SW and BW (see text) 

T * SW BW 

q T c ct q Z" c 

0.2 0.75 0.012 512.6 0.78 0.03 412.9 
0.3 0.68 0.t4 77.4 0.65 0.17 68.5 
0.4 0.63 0.37 28.1 0.63 0.39 26.7 
0.5 0.56 0.604 15.3 0.56 0.62 14.8 
0.6 0.53 0.87 10.4 0.53 0.89 9.2 

Table 2. Activation energy B and pre-exponential factor A of the 
average hydrogen bond lifetime, ( r )  = A x exp (B/T *) for SSW, 
SW, and BW 

SSW SW BW 

A 0.4104 0.5768 0.6192 

B 1.033 1.059 1.019 

6 L  I I J I i 

41- 

3 I- j ~  

2{- 

A 

1~- 

0 1 2 4 5 

l/T* 

Fig. 7. Arrhenius plot of the temperature dependence of the mean 
lifetime ~r);  (o) results from and (straight line) fit to simulations 
of the SW model; ( • ) results from and (dashed) fit to simulations 
of the BW model; (zx) results from and (dashed-dotted) fit to sim- 
ulations of the SSW model 

becomes shorter (only about  10 MC-steps at T * =  0.6), 
see Fig. 6 and Table 1. The exponential  cutoff  can be 
measured by its time constant  L., which was determined 
by a fit to P(z)~q• The values o f  q and 
r c are also shown in Table 1. 

The mean lifetime of  a hydrogen bond, ( r ) ,  was cal- 
culated f rom the distribution o f  lifetimes by numerical 
integration. In Fig. 7 the temperature dependence o f ( z )  
is shown for SW, BW, and SSW. The mean lifetimes o f  
SSW were also obtained f rom MC-simulat ions (one-di- 
mensional lattice o f  length 103, 10 4 MC-steps),  analo- 
gously to SW and BW. All models exhibit an Arrhenius 
temperature dependence o f  the mean  lifetime of  a hydro-  
gen bond.  Interestingly, the activation energies and pre- 
exponential  factors o f  the above models [obtained by a 
fit to ( z )  = A • exp (B/T*)] are very similar, see Table 2. 
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VII. Discussion 

VII.a. Comparison with real water 

For a comparison with real water the temperature scale 
of the models has to be adjusted correctly, using the 
single free parameter of the independent bond theory, the 
hydrogen bond energy e. As already recognized by An- 
gell, entropy differences between open and closed hydro- 
gen bonds due to other degrees of freedom, e.g. different 
vibrational spectra, have to be taken into account [28]. 
This can be accomodated easily by replacing the hydro- 
gen bond energy e by an effective free energy 

f = e -- Tcr. (24) 

The average number of hydrogen bonds and the specific 
heat per molecule then have the form: 

4 exp (fl f )  (25) 
<nil> - -  1 + exp (/? f ) '  

2 (Be)2exp (B f )  
c v / k s -  (1 + exp (/? f ) )2  �9 (26) 

Since the results for (nil> and c v of SSW, SW, and BW 
are equal to the independent bond results the renormal- 
ization of the energy, Eq. (24), is valid for those models 
also. Angell adjusted the values of the parameters e and 
o- by comparison of the heat capacity, Eq. (26), with data 
for the configurational heat capacity of water [1, 28]. He 
obtained e = 1.3 • 10 -z~ J and a = 3.3 • 10 23 J /K.  Com- 
pared, e.g., to the hydrogen bond energy in water 
(9•  10 -2~ J_<e _<3x 10-2~ J, see Ref.1) the bond energy 
parameter e is within the correct range. The entropy term 
is of  the order of the melting entropy of water, 
s , ~ = 3 . 6 •  The temperature dependence of 
(nil> using the above parameters is shown in Fig. 8. We 
note that, due to the entropy term in (25) the high tem- 
perature values of  Pc may now fall well below 1/2, de- 
pending on the actual values of e and a.  However, for 

E I I I 
4.0 

3 5  

3,0 

2.5 

2.0 

I~0 ,| ~| 300 400 ,| 
T [Kelvin] 

Fig. 8. Average number of hydrogen bonds per molecule, (nil>, vs 
temperature renormalized using (25) 

the values of e and o- listed above, a spanning cluster still 
exists for most lattices over the whole temperature range 
of liquid water, i.e. up to about 400 K. 

Using those parameters for the energy e and the en- 
tropy ~r, we can compare the mean number of hydrogen 
bonds calculated from (25) with newer experimental re- 
sults. King and Barletta [38] have measured the average 
number of hydrogen bonds per molecule ( n i l )  in liquid 
water at T =  0 ~ to <n~>ex p = 3.1, and have extrapolated 
their data to higher temperatures. In Fig. 9 the inde- 
pendent bond results for (n  q> are shown, together with 
results from MD-simulations of ST2-water [8], results 
from a lattice gas model of water [39], from a cluster 
model [40], and from experimental data [38]. Both, MD 
and independent bond results are compatible with the 
experimental results from [38],, whereas the results of the 
lattice gas model and the cluster model disagree. The 
experimental data are exact only at T =  0 ~ at higher 
temperatures they give only a lower limit for (n~>.  

The thermodynamic properties of  hydrogen bonds in 
liquid water are well described by the independent bond 
results, as shown above. Therefore, the liquid state of 
water may belong to the same universality class of  hy- 
drogen bond networks as Angell's independent bond 
model and our lattice models of water. This is supported 
also from a statistical mechanics point of view. For  the 
evaluation of the partition function the liquid state can 
be viewed simply as a collection of different spatial ar- 
rangements of molecules. For  each of these configura- 
tions the independent bond approach can be employed. 
In liquid water we can assume that for most of the rel- 
evant configurations M ~ 2 N  holds, the resulting ther- 
modynamic behavior being the same as above. The par- 
tition function will simply be renormalized by the appro- 
priate entropy, see Sect. IV. 

The time scale of an MC-step is a free parameter in 
MC-simulations which has to be scaled to experimental 
results. The average lifetime of a hydrogen bond, ( r> ,  in 
water was measured by several authors [41, 42, 43]. We 
use the data of  Conde and Teixeira [43], which were 
obtained from depolarized Rayleigh scattering spectro- 
scopy. They found an Arrhenius temperature dependence 
for ( r > .  Renormalizing the time scale of our simulations 
of SW and BW according to [43], yields an Arrhenius 
temperature dependence for the time scale of a single 
MC-step, 

rMc = r 0 • exp ( f lAE),  (27) 

in addition to the Arrhenius temperature dependence of 
the mean lifetime of a hydrogen bond. The values of the 
activation energies A E and pre-exponential factors r 0 are 
shown in Table 3 for SW and BW. From those data, a 

Table 3. Parameters for the temperature dependence of an MC-step 
in SW and BW, see Eq. (27) 

SW BW 

AE[J] 4.77• -2t 5.3 • -21 

r o [s] 4.04 • 10 - ~4 3.52 • 10 - 14 
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simulation at room temperature over 7 • 10 4 MC-steps is 
equivalent to several nanoseconds. 

To the best of our knowledge, there are no experi- 
mental data available for the distribution of lifetimes of 
a hydrogen bond. Therefore, it was not possible to com- 
pare those results with experimental data. 

VII.b. Comparison with MD-Results 

A general difficulty with MD-simulations of water is the 
lack of an explicit representation of a hydrogen bond 
contribution in the pair potentials used to describe the 
interactions of  water molecules. Therefore, the simulation 
results have to be interpreted using a somewhat artificial 
hydrogen bond definition. We compared our results with 
data from extensive MD-simulations of Stillinger et al. 
[4, 8, 36, 44] who introduced the empirical ST2-water 
pair potential. In their publications two ST2-water 
molecules are considered to be hydrogen bonded if the 
distance between them is below a certain cutoff distance, 
and if the interaction energy is below a certain cutoff 
energy, VHB. Both, the cutoff distance and the cutoff en- 
ergy have to be scaled using experimental results [6, 8]. 

Geiger et al. [8] have calculated the average number 
of hydrogen bonds from ST2-simulation data. Their re- 
sults are shown in Fig. 9 together with results from other 
water models, the independent bond results, and exper- 
imental data from [38]. As can be seen, the MD-results 
follow closely the behavior of  the independent bond 
results. We note that, due to the choice of the cutoff 
potential, VHB , for assigning hydrogen bonds, there is a 
free parameter involved, which allows a shift of the MD- 
results along the vertical axis, see also Fig. 9. Unfortu- 
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Fig. 9. Average number of hydrogen bonds per molecule, (n~), vs 
temperature; (straight line) independent bond results with 
e = 1.3 • 10 20 j and ~r = 3.3 • 10 -23 J/K from [28]; (dashed) and 
(dashed-dotted) results from MD-simulations [8] for two different 
values of the cutoff energy for a hydrogen bond assignment 
(VHB = 2.1 • 10-2~ J and VHB = 2.5 • 10 .2o J, respectively), (o) re- 
sults from a lattice gas model of water [39], (zx) results from a 
cluster model of water [40], and (x )  experimental results from 
liquid water [38]; we note that the experimental results for T > 0 ~ 
are extrapolations and give only lower limits to the actual values 
[38] 

nately, no MD-results are available for the heat capacity 
of a hydrogen bond network. Therefore, it would be in- 
teresting to reanalyze MD-simulations of water to obtain 
the specific heat due to hydrogen bond fluctuations, see 
Eq. (17), and compare those results with the independent 
bond prediction for c o . 

The mean lifetime of a hydrogen bond calculated from 
the distribution of lifetimes in MD-simulations [6,45] 
depends also strongly on the definition of a hydrogen 
bond used in those simulations. Geiger and Stanley [6] 
used a very general definition of a hydrogen bond (re- 
cording all hydrogen bonds with a negative interaction 
energy), therefore yielding values that give a lower bound 
to the observable lifetimes ( ( r ) M D < 0 . 2  ps at room tem- 
perature, compared w i t h  ~Z')exp=0.53 ps at room tem- 
perature [43]). Their temperature dependence for ( r ) M  D 
has an Arrhenius form. In a recent work, Stanley et al. 
[45] used a novel, stricter hydrogen bond definition for 
their MD-simulations of ST2 particles. Therefore, their 
mean lifetimes are generally larger (e.g. ( r ) M  D = 2.23 ps 
at room temperature) than the experimental values. Also, 
the temperature dependence of ( r )  in the MD-simula- 
tions of Stanley et al. [45] differs from the experimental 
one in that it is not Arrhenius-like. Since the experiments 
[43] as well as our simulations exhibit an Arrhenius-like 
temperature dependence of ( r ) ,  together with the diffi- 
culties in assigning hydrogen bonds in MD-simulations, 
we feel it is justified to scale the time step of our MC- 
simulations using the experimental data, as we did above. 

At the temperatures of interest ranging from T =  240 K 
(supercooled water) to T =  373 K (boiling point of water) 
- using the above parameters this corresponds to 
0.6 < T* < 6.6 - the distribution of  lifetimes of a hydro- 
gen bond in the SW and BW models is simply exponen- 
tial. Non-exponentiality is observed only at temperatures 
lower than T =  240 K. The degree of non-exponentiality 
of the lifetime distribution in MD-simulations depends 
strongly on the definitions of a hydrogen bond employed. 
The MD-simulations of Geiger et al. [6] revealed only a 
weak non-exponentiality in the life-time distribution, 
whereas Stanley et al. [45] yield a strong non-exponen- 
tiality in the lifetime distribution. 

We note that also MD-simulations of water hint to a 
universality in the properties of hydrogen bond networks. 
Rapaport  [46] compared the properties of hydrogen 
bonded clusters of MD-simulations of the MCY-CI model 
(using an ab initio quantum mechanical pair potential) 
with results from MD-simulations of ST2-water. He found 
no significant difference in the properties of hydrogen 
bonded clusters between the different models. 

VII.c. Summary and outlook 

The above discussed lattice models of hydrogen bond 
networks are simple, but reproduce important features of 
real water. The temperature dependence of the thermo- 
dynamic properties like the mean number of hydrogen 
bonds and the heat capacity are in accord with experi- 
mental and MD-results. The success of the independent 
bond description due to Angell [28] justifies an alterna- 
tive description of a hydrogen bond network in terms of  
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percolat ion models. All o f  our  models predict the exis- 
tence o f  a spanning cluster o f  hydrogen  bonds in the 
temperature  range o f  liquid water, a possible explanat ion 
for the high mobili ty o f  protons.  Fur thermore,  the tem- 
perature dependence o f  the probabil i ty distribution for 
finding a water molecule with i hydrogen bonds  in the 
lattice is predicted. The Arrhenius temperature depen- 
dence o f  the mean lifetime o f  a hydrogen bond  is in accord 
with experimental results. The functional  form of  the dis- 
tr ibution o f  lifetimes, P (r),  is simply exponential  over a 
b road  range o f  temperatures.  The surprising similarities 
between the various hydrogen  bond  network models lead 
us to the hypothesis o f  the existence o f  a universality class 
o f  hydrogen bond  networks that  is governed by the in- 
dependent  bond approach,  and which may  include the 
liquid state o f  water. 

In our  opinion the SW and BW model  are a good  
basis for  studying protein-water  interactions that  result 
f rom hydrogen bonding.  Particularly protein folding is a 
problem where this interaction is o f  u tmost  importance 
[47, 48]. The comput ing  power  required for the study of  
those water models is much  smaller than, for example, 
in molecular  dynamics  approaches.  This was one o f  our  
goals when developing these models.  Therefore,  the sim- 
ulations o f  longer trajectories (nanoseconds to microse- 
conds, depending on the hardware)  which cover a b road  
range o f  the protein folding process in a water-like liquid 
should be possible. 

The authors thank Prof. F.F. Seelig and Prof. O.E. R6ssler for 
their support. 
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